Psyc 250 - Statistics & Experimental Design

ANOVA Exercise

As we discussed in class, the "ANOVA family" has much more flexibility than the family of *t* tests. For today's exercises, we will demonstrate this flexibility by using an expanded version of the Anorexia dataset. There is now an additional group (Supportive Therapy) and an additional timepoint (6 month follow-up). Open the file as an SPSS file. If you like, you can enter the Value Labels for "Group" (1 = Family Therapy, 2 = Control, 3 = Supportive Therapy).

Context: In the context of testing the effectiveness of a particular treatment, it is not uncommon to find that some form of therapy (such as Family Therapy) is better than no therapy at all (i.e., control group). One could argue that any contact with a therapist is therapeutic in and of itself, regardless of the specific type of therapy. Therefore, it is also important to compare various types of therapies to each other. In today's example, we will include a second type of control group – Supportive Therapy. This therapy is designed to offer supportive counseling to the patient, but beyond this emotional support, no actual therapeutic techniques are utilized (i.e., this is essentially another version of a control group).

One-Way ANOVA

We will use ANOVA to answer the following question: Are there differences in pretreatment weight across the Family Therapy, Supportive Therapy, and control conditions?

Concept Check

Before conducting the actual analysis...

- 1. What is the Null Hypothesis (state in words and statistical notation)?
- 2. What do you expect to find?
- 3. Why is this analysis important?

To compute an ANOVA in SPSS...

 $[Analyze] \rightarrow [General Linear Model] \rightarrow [Univariate]$

Analyze	Graphs	Utilities	Add-	ons	Window	Help	
Reports	5		•	.sav	[DataSet1] – SPSS (Data Editor
Descrip	tive Statis	tics	•	6			
Tables			•				
Compa	re Means		•	_			
Genera	l Linear Mo	odel	•	G	🖁 Univaria	ate	
Genera	lized Linea	r Models	•	GI	# Multiva	riate	
Mixed M	Models		•	GI	🖗 Repeate	ed Measi	ires
Correla	te		•		Mada	6	
Regress	sion		•		varianc	e Compo	onents
Logline	ar		•	_			
Classify	/		•				
Data Re	duction		•				
Scale			•				
Nonpar	ametric Te	ests	•	_			
Time Se	eries		•	_			
Surviva			•	-			
Multiple	e Response	e	•				
Quality	Control		•				
🖊 ROC	Curve						

...which will open a new window...

 	Univariate Dependent Variable:	Model	Dependent Variable: Move your continuous DV here.	
 	Fixed Factor(s):	Contrasts Plots Post Hoc Save	Fixed Factors: Move your categorical IV(s) to this box	
	Covariate(s):	Options	Post Hoc: Here you can select Post Hoc analysis (see "Post Hoc" below).	
? (Re	WLS Weight:	ncel OK	Options: There are <i>many</i> dir options, some of which are of helpful (see "Options" below	fferent quite v).

Post Hoc (select the "Post Hoc..." button to open the following window):

👼 🔘 😏 🛛 Univar	iate: Post Hoc Multipl	e Comparisons for Observed Means
Factor(s):		Post Hoc Tests for:
Group		Group
Equal Variances A	ssumed	
LSD	S-N-K	🗌 Waller-Duncan
🗌 Bonferroni	Tukey	Type I/Type II Error Ratio: 100
Sidak	Tukey's-b	Dunnett
Scheffe	🗌 Duncan	Control Category: Last +
R-E-G-W-F	Hochberg's GT2	Test
R-E-G-W-Q	Gabriel	⊙ 2-sided ○ < Control ○ > Control
Equal Variances N	lot Assumed	
🗌 Tamhane's T2	2 🗌 Dunnett's T3	Games-Howell 🗌 Dunnett's C
?		Cancel Continue

Post Hoc Tests for: Move any "Factors" that have more than 2 groups/levels to this box. In this case, there is only one IV. Remember, Post-Hocs will help us identify which groups are significant, *if the omnibus F-test is significant*.

The Tukey post-hoc has become the 'gold standard'. That is, it's commonly used, and it is easy to justify. You may notice that it's in a box called "Equal Variances Assumed". This term should sound familiar! In the event that we cannot assume equal variances, we should also select one under "Equal Variances Not Assumed" (the Games-Howell is common).

Options (Select the "Options..." button to open the following window):

) 🔿 🔿 Univari	iate: Options	
Estimated Marginal Means		
Factor(s) and Factor Interactions: (OVERALL) Group	Display Means for: Compare main effects Confidence interval adjustment: SD(none) \$	
play		
Descriptive statistics	Homogeneity tests	L like to calcot "Descriptive Statistics" as t
Estimates of effect size	Spread vs. level plot	The to select Descriptive Statistics, so t
Observed power	Residual plot	it's easy to reference the Means and Standa
Parameter estimates	Lack of fit	Deviations when reporting results. It's also
Contrast coefficient matrix	General estimable function	good idea to select "Homogoneity tests" If
gnificance level: .05 Confid	dence intervals are 95.0%	you'd like SPSS to estimate the effect size
(?)	Cancel Continue	and/or power, select those options as well.

Below is selected Output for the options we selected above. You should know enough about SPSS and ANOVA to navigate this Output. A few notes...

- Start with Levene's Test (interpretation is the same as with a *t*-test)
- If Equal variances are assumed, you can use Tukey for the post-hoc; if not, you can use Games-Howell

Descriptive	Statistics
-------------	------------

Dependent	Variab	le:WtPre	
			_

		Std.	
Group	Mean	Deviation	N
Family Therapy	83.229	5.0167	17
Control	83.496	4.8352	26
Supportive Therapy	83.813	4.0803	16
Total	83,505	4 6232	59

Levene's Test of Equality of Error Variances

Dependent Variable:WtPre					
F	df1	df2	Sig.		
.239	2	56	.788		

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. a. Design: Intercept + Group The outlined section of this Output Box should look VERY familiar to you --- it is essentially the ANOVA Summary Table. Focus on this outlined portion when interpreting the results of a One-Way ANOVA. Beyond the summary table we computed by hand, this output also includes an estimate of effect size (eta-squared) and an estimate of observed power (Note: when differences are *expected*, we want power to be .80 or greater). Note: SPSS Partial Eta Squared is the same as the "eta-squared" that we discussed in class.

Tests	of	Between-Su	bjects	Effects

	Dependent Variab	le:WtPre								
	Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power	
	Corrected Model	2.806	2	1.403	.064	.939	.002	.127	.059	
	Intercept	392835.971	1	392835.971	17785.408	.000	.997	17785.408	1.000	
	Group	2.806	2	1.403	.064	.939	.002	.127	.059	
	Error	1236.902	56	22.088						
i	Total	412652.560	59						ь	1.1
	Corrected Total	1239.708	58							

a. R Squared = .002 (Adjusted R Squared = -.033)
 b. Computed using alpha = .05

Dependent Vari	able:WtPre	Multip	le Comparisons	1			
						95% Confide	ence Interval
	(I) Group	(I) Group	Mean Difference (I-	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	Family Therapy	Control	267	1.4659	.982	-3.796	3.262
		Supportive Therapy	583	1.6370	.933	-4.524	3.358
	Control	Family Therapy	.267	1.4659	.982	-3.262	3.796
		Supportive Therapy	316	1.4933	.976	-3.912	3.279
	Supportive Therapy	Family Therapy	.583	1.6370	.933	-3.358	4.524
		Control	.316	1.4933	.976	-3.279	3.912
Games-Howell	Family Therapy	Control	267	1.5426	.984	-4.050	3.516
		Supportive Therapy	583	1.5878	.929	-4.495	3.329
	Control	Family Therapy	.267	1.5426	.984	-3.516	4.050
		Supportive Therapy	316	1.3928	.972	-3.721	3.088
	Supportive Therapy	Family Therapy	.583	1.5878	.929	-3.329	4.495
		Control	216	1 2029	072	2 0 9 9	2 7 2 1

Here are the post-hoc analyses – divided by Tukey and Games-Howell. In this case, there is nothing to interpret because the overall F test is not significant. However, notice the format: Family therapy is compared to the Control and then Supportive Therapy. In the next row, The control is the reference group, followed by Supportive Therapy.

Based on observed means. The error term is Mean Square(Error) = 22.088.

Concept Check

- 4. The effect size (eta-squared) is extremely low --- why?
- 5. Write the results of this test in APA format.
- 6. What would you expect if you ran the results at post-test?...and at 6-month follow-up?
- 7. Examine Post-test and 6 month f/u weight across groups, and write the results in APA Format.

Repeated Measures ANOVA

We will use Repeated Measures ANOVA to answer the following questions: Do patients *within a particular group* gain weight throughout therapy, and is any weight gain maintained 6 months after therapy?

Concept Check

8. What is the Null Hypothesis for the Family Therapy Group (state the Null Hypotheses in words and statistical notation)?

Recall from repeated measures t that we must first select cases that we want included in our analysis! (See notes from previous SPSS Lab). Let's start with the Family Therapy Group (Group = 1).

To compute a Repeated Measures ANOVA in SPSS...

 $[Analyze] \rightarrow [General Linear Model] \rightarrow [Repeated Measures]$

which will open a new window	Within-Subject Factor Name: Rename "factor1" to something that carries more meaning for your data (such as "Time"). Then, enter the "Number of Levels". In this case there is pre, post, and 6-month follow- up (i.e., 3 levels). (That is, we have 1 IV [Time] with 3 levels [pre, post, f/u]; the relation between groups is dependent, so we are using a Repeated Measures ANOVA). Then click "Add".
Measure Name: Add Change Remove Help Reset Cancel Define	After adding the unique factor name and levels, your box should look like this Add Change Remove Measure Name: Add Change Remove Remove Remove Remove Change Remove Change Remove Remove

Next, Click "Define", which opens yet another window (see next page)...

 ID Group Wt6mnth filter_S 	Repeated Measures Within-Subjects Variables (Time): WtPre(1) WtPost(2) _?_(3)	Model Contrasts Plots	informed SPS the previous s level with the and move it ir switch. Do thi
	(Post Hoc Save Options	
	Between-Subjects Factor(s):		Options & Po a repeated me slicing bread
	Covariates:		Repeated Mea Linear Model more than a s
? Rese	t Paste Cano	е	ANOVA with
			button and see

Within-Subjects Variables (Time): You informed SPSS that there would be 3 levels in the previous step. Now, you can define each level with the specific variable. Select level 1 and move it into this box using the toggle switch. Do this for the other variables as well.

Options & Post Hoc: Unfortunately, running a repeated measures ANOVA in SPSS is like slicing bread with a chainsaw. That is, the Repeated Measures option under General Linear Model was designed to do MUCH more than a simple repeated measures ANOVA with 3 levels. Therefore, the Post Hoc option doesn't offer much (click on the button and see what happens). However, posthocs can still be generated under **Options** (see window below).

After clicking on the Options button, the following window will open...

e contration de la cont	
Estimated Marginal Means Factor(s) and Factor Interactions: Display Means for: OVERALL) Time	Display Means For: Move the "Time" factor to this box.
Compare main effects Confidence interval adjustment Bonferroni	Check this box, and then select "Bonferroni" under "Confidence Interval Adjustment".
Display Descriptive statistics Estimates of effect size Observed power Parameter estimates SSCP matrices Lack of fit Residual SSCP matrix General estimable function Significance level: .05 Confidence intervals are 95.0% Cancel Continue	I also like to select "Descriptive Statistics" to facilitate the writing of the final APA Write- up. If you like, you can also select "estimates of effect size" (or any other options of interest). Note: "Homogeneity tests" will not produce any results unless you also include a "between subjects" factors, as we did in the between groups ANOVA).

Next, Click Continue, and then run the analysis. Selected and annotated output can be found on the following page...

Once again, you should know enough about SPSS by now to navigate most of this Output (though do note the annotations below).

Descriptive Statistics								
	Mean	Std. Deviation	N					
WtPre	83.229	5.0167	17					
WtPost	90.494	8.4751	17					
Wt6mnth	91.6471	8.63576	17					
				. /				

The details of this test are beyond the scope of this class. However, know that it is very sensitive. Therefore, this test is often ignored, and you can proceed below by interpreting the "Tests of Within-Subjects Effects" using the "Sphericity Assumed" results.

Mea	sui	re:	Ν	۱E	٩SU	RE	_1				
		-			_			_	т	-	-

Measure:MEASURE_1								
Within Subjects Effect					Epsilona			
	Mauchly's W	Approx. Chi- Square	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Lower-bound	
Time	.177	26.015	2	.000	.548	.558	.500	
Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.								

Mauchly's Test of Sphericit

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept Within Subjects Design: Time

Tests of Within-Subjects Effects

Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^a
Time	Sphericity Assumed	708.118	2	354.059	19.357	.000	.547	38.715	1.000
	Greenhouse-Geisser	708.118	1.097	645.621	19.357	.000	.547	21.231	.990
	Huynh-Feldt	708.118	1.117	633.993	19.357	.000	.547	21.621	.991
	Lower-bound	708.118	1.000	708.118	19.357	.000	.547	19.357	.985
Error(Time)	Sphericity Assumed	585.302	32	18.291					
	Greenhouse-Geisser	585.302	17.549	33.353					
	Huynh-Feldt	585.302	17.871	32.752					
	Lower-bound	585.302	16.000	36.581					

a. Computed using alpha =

		Pa	irwise Comp	parisons			
Measure:	MEASURE_1						
(I) Time	(J) Time				95% Confiden Differ	ce Interval for ence ^a	
		Mean Difference (I– J)	Std. Error	Sig. ^a	Lower Bound	Upper Bound	
1	2	-7.265*	1.736	.002	-11.905	-2.625	
	3	-8.418*	1.800	.001	-13.228	-3.607	
2	1	7.265*	1.736	.002	2.625	11.905	
	3	-1.153	.451	.063	-2.359	.053	
3	1	8.418*	1.800	.001	3.607	13.228	
	2	1.153	.451	.063	053	2.359	

Here are the post-hoc tests using the Bonferroni correction (see Note "a" below this box). Unfortunately, SPSS doesn't present the variable name, so you need to remember that 1 was defined as Pretest weight, 2 as Posttest weight, and 3 as six-month follow-up. The first row compares time 1 to time to 2, followed by time 1 to time 3. Next, time 2 is compared to times 1 and 3.

Based on estimated marginal means *. The mean difference is significant at the

a. Adjustment for multiple comparisons: Bonferroni.

Concept Check

- 9. Write the results of this test in APA format (for only the "Family Therapy" group)
- 10. Examine changes in weight for the control and Supportive Therapy Groups, and write the results in APA Format.
- 11. Offer a descriptive (words only, no numbers) summary of all results. (Convince me that you hear music!!!)